Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Talanta ; 258: 124479, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2255880

ABSTRACT

The ongoing outbreak of the novel coronavirus disease 2019 (COVID-19) draws worldwide concerns due to its long incubation period and strong infectivity. Although RT-PCR-based methods are being widely applied for clinical diagnosis, timely and accurate diagnosis towards COVID-19 causing virus, the SARS-CoV-2, is still limited due to labor-intensive and time-consuming operations. Herein, we report a new viral RNA extraction method based on poly-(amino ester) with carboxyl group (PC)-coated magnetic nanoparticles (pcMNPs) for the sensitive detection of SARS-CoV-2. This method combines the lysis and binding steps into one step, and refines multiple washing steps into one step, giving a turnaround time of less than 9 min. Furthermore, the extracted pcMNP-RNA complexes can be directly introduced into subsequent RT-PCR reactions without elution. This simplified viral RNA method could be well adapted in fast manual and automated high-throughput nucleic acids extraction protocols suitable for different scenarios. A high sensitivity down to 100 copies/mL and a linear correlation between 100 and 106 copies/mL of SARS-CoV-2 pseudovirus particles are achieved in both protocols. Benefitting from the simplicity and excellent performances, this new method can dramatically improve the efficiency and reduce operational requirements for the early clinical diagnosis and large-scale SARS-CoV-2 nucleic acid screening.


Subject(s)
Magnetite Nanoparticles , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , RNA, Viral/analysis , RNA, Viral/genetics , Sensitivity and Specificity
2.
Nanoscale ; 13(43): 18084-18088, 2021 Nov 11.
Article in English | MEDLINE | ID: covidwho-1500761

ABSTRACT

This communication describes a novel water-soluble membrane prepared from chitosan intended for SARS-CoV-2 viral nucleic acid collection and detection. The CSH membrane formed from nanofibers shows promising potential in the quantitative determination of the SARS-CoV-2 viral nucleic acids at a concentration of 102 copies per L in air. The sponge-like structure which allows gas to pass through for collection of viral nucleic acids potentially provides simple, fast, and reliable sampling as well as detection of various types of airborne viruses.


Subject(s)
COVID-19 , Nucleic Acids , Humans , RNA, Viral , SARS-CoV-2 , Specimen Handling , Water
3.
Nanoscale ; 13(22): 10133-10142, 2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1249216

ABSTRACT

Efficient point-of-care diagnosis of severe acute respiratory syndrome-corovavirus-2 (SARS-CoV-2) is crucial for the early control of novel coronavirus infections. At present, polymerase chain reaction (PCR) is primarily used to detect SARS-CoV-2. Despite the high sensitivity, the PCR process is time-consuming and complex which limits its applicability for rapid testing of large-scale outbreaks. Here, we propose a rapid and easy-to-implement approach for SARS-CoV-2 detection based on surface enhanced infrared absorption (SEIRA) spectroscopy. The evaporated gold nano-island films are used as SEIRA substrates which are functionalized with the single-stranded DNA probes for specific binding to selected SARS-CoV-2 genomic sequences. The infrared absorption spectra are analyzed using the principal component analysis method to identify the key characteristic differences between infected and control samples. The SEIRA-based biosensor demonstrates rapid detection of SARS-CoV-2, completing the detection of 1 µM viral nucleic acids within less than 5 min without any amplification. When combined with the recombinase polymerase amplification treatment, the detection capability of 2.98 copies per µL (5 aM) can be completed within 30 min. This approach provides a simple and economical alternative for COVID-19 diagnosis, which can be potentially useful in monitoring and controlling future pandemics in a timely manner.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19 Testing , Humans , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , Sensitivity and Specificity , Spectrum Analysis
4.
Chem Soc Rev ; 50(6): 3656-3676, 2021 Mar 21.
Article in English | MEDLINE | ID: covidwho-1132110

ABSTRACT

The novel human infectious coronaviruses (CoVs) responsible for severe respiratory syndromes have raised concerns owing to the global public health emergencies they have caused repeatedly over the past two decades. However, the ongoing coronavirus disease 2019 (COVID-19) pandemic induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has received unprecedented attention internationally. Monitoring pathogenic CoVs in environmental compartments has been proposed as a promising strategy in preventing the environmental spread and tracing of infectious diseases, but a lack of reliable and efficient detection techniques is still a significant challenge. Moreover, the lack of information regarding the monitoring methodology may pose a barrier to primary researchers. Here, we provide a systematic introduction focused on the detection of CoVs in various environmental matrices, comprehensively involving methods and techniques of sampling, pretreatment, and analysis. Furthermore, the review addresses the challenges and potential improvements in virus detection techniques for environmental surveillance.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Environmental Monitoring/methods , Pandemics , SARS-CoV-2/isolation & purification , Aerosols/analysis , COVID-19/transmission , Fomites/virology , High-Throughput Nucleotide Sequencing , Humans , Immunoassay , Quality Control , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Sewage/virology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Wastewater/virology
SELECTION OF CITATIONS
SEARCH DETAIL